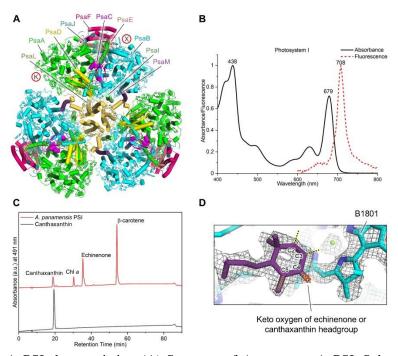
Structure and evolution of Photosystem I in the earlybranching cyanobacterium *Anthocerotibacter panamensis*

<u>Christopher J. Gisriel</u>^{1,2}, Han-Wei Jiang³, David A. Flesher¹, Gary W. Brudvig¹, Tanai Cardona⁴, Ming-Yang Ho³


¹Department of Chemistry, Yale University, New Haven, CT, USA

²Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA

³Department of Life Science, National Taiwan University, Taipei, Taiwan

⁴School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK

Thylakoid-free cyanobacteria are thought to preserve ancestral traits of early-evolving organisms capable of oxygenic photosynthesis. However, and until recently, photosynthesis studies in thylakoid-free cyanobacteria were only possible in the model strain *Gloeobacter violaceus*. Here, we report the isolation, biochemical characterization, cryo-EM structure, and phylogenetic analysis of photosystem I from a newly discovered thylakoid-free cyanobacterium, *Anthocerotibacter panamensis*, a distant relative of the genus *Gloeobacter*. We find that *A. panamensis* PSI exhibits a distinct carotenoid composition and has one conserved low-energy chlorophyll site, which was lost in *G. violaceus*. These features explain the *A. panamensis* capacity to grow under high light intensity, unlike other Gloeobacteria. Furthermore, we find that while at the sequence level PSI in thylakoid-free cyanobacteria has changed to a degree comparable to that of other strains, its subunit composition and oligomeric form might be identical to that of the most recent common ancestor of cyanobacteria.

Fig. 1. A. panamensis PSI characteristics. (A) Structure of A. panamensis PSI. Subunits PsaK and PsaX are not present. (B) Room temperature absorbance and 77 K fluorescence of A. panamensis PSI. (C) HPLC chromatogram of pigments present in A. panamensis PSI and a canthaxanthin standard. (D) Cryo-EM map near a keto-carotenoid and positions that were quantitatively assessed.